Virtual Twin

Virtual Twin refers to a digital replica of physical assets, processes and systems that can be used for various purposes. The digital representation provides both the elements and the dynamics of how an Internet of Things device operates and lives throughout its life cycle.

Digital twins integrate artificial intelligence, machine learning and software analytics with data to create living digital simulation models that update and change as their physical counterparts change. A digital twin continuously learns and updates itself from multiple sources to represent its near real-time status, working condition or position. This learning system, learns from itself, using sensor data that conveys various aspects of its operating condition; from human experts, such as engineers with deep and relevant industry domain knowledge; from other similar machines; from other similar fleets of machines; and from the larger systems and environment in which it may be a part of. A digital twin also integrates historical data from past machine usage to factor into its digital model.

In various industrial sectors, twins are being used to optimize the operation and maintenance of physical assets, systems and manufacturing processes. They are a formative technology for the Industrial Internet of Things, where physical objects can live and interact with other machines and people virtually.

An example of how digital twins are used to optimize machines is with the maintenance of power generation equipment such as power generation turbines, jet engines and locomotives.

Another example of digital twins is the use of 3D modeling to create digital companions for the physical objects. It can be used to view the status of the actual physical object, which provides a way to project physical objects into the digital world. For example, when sensors collect data from a connected device, the sensor data can be used to update a "digital twin" copy of the device's state in real time. The term "device shadow" is also used for the concept of a digital twin. The digital twin is meant to be an up-to-date and accurate copy of the physical object's properties and states, including shape, position, gesture, status and motion.

A digital twin also can be used for monitoring, diagnostics and prognostics to optimize asset performance and utilization. In this field, sensory data can be combined with historical data, human expertise and fleet and simulation learning to improve the outcome of prognostics. Therefore, complex prognostics and Intelligent Maintenance System platforms can leverage the use of digital twins in finding the root cause of issues and improve productivity.

Request a demo

We are currently working with select plant operators to optimize their data set and improve operations as part of training our machine-learning models, if you would like your operations considered for this program, get started here.




222 Broadway 19th Floor
New York, NY 10038
United States of America